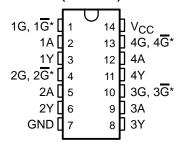
The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

SN54125, SN54126, SN54LS125A, SN54LS126A, SN74125, SN74126, SN74LS125A, SN74LS126A QUADRUPLE BUS BUFFERS WITH 3-STATE OUTPUTS


SDLS044A - DECEMBER 1983 - REVISED MARCH 2002

- Quad Bus Buffers
- 3-State Outputs
- Separate Control for Each Channel

description

These bus buffers feature three-state outputs that, when enabled, have the low impedance characteristics of a TTL output with additional drive capability at high logic levels to permit driving heavily loaded bus lines without external pullup resistors. When disabled, both output transistors are turned off, presenting a high-impedance state to the bus so the output will act neither as a significant load nor as a driver. The '125 and 'LS125A devices' outputs are disabled when \overline{G} is high. The '126 and 'LS126A devices' outputs are disabled when G is low.

SN54125, SN54126, SN54LS125A, SN54LS126A...J OR W PACKAGE SN74125, SN74126...N PACKAGE SN74LS125A, SN74LS126A...D, N, OR NS PACKAGE (TOP VIEW)

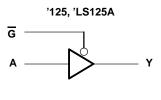
*G on '125 and 'LS125A devices; G on 126 and 'LS126A devices

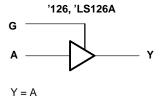
SN54LS125A, SN54LS126A . . . FK PACKAGE (TOP VIEW)

*G on '125 and 'LS125A devices; G on 126 and 'LS126A devices NC – No internal connection

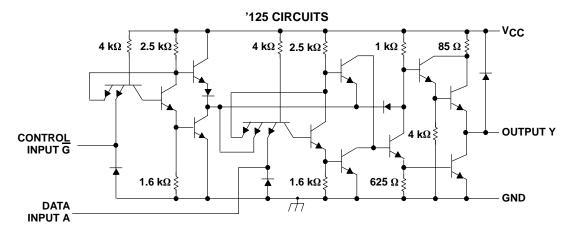
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

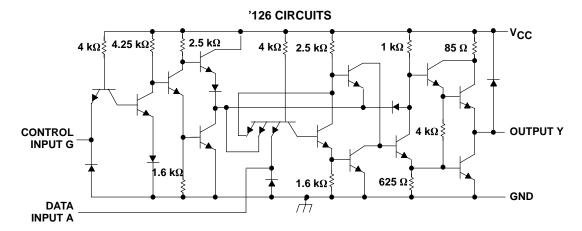
The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.


SDLS044A - DECEMBER 1983 - REVISED MARCH 2002


ORDERING INFORMATION

TA	PACI	(AGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube	SN74LS125AN	SN74LS125AN
	PDIF - IN	Tube	SN74LS126AN	SN74LS126AN
0°C to 70°C		Tube	SN74LS125AD	LS125A
	SOIC - D	Tape and reel	SN74LS125ADR	L3125A
		Tube	SN74LS126AD	LS126A
		Tape and reel	SN74LS126ADR	L5120A
	SOP – NS	Tape and reel	SN74LS125ANSR	74LS125A
	30F - N3	Tape and reel	SN74LS126ANSR	74LS126A
	CDIP – J	Tube	SN54LS125AJ	SN54LS125AJ
–55°C to 125°C	CDIP = J	Tube	SNJ54LS125AJ	SNJ54LS125AJ
-55 0 10 125 0	CFP – W	Tube	SNJ54LS125AW	SNJ54LS125AW
	LCCC – FK	Tube	SNJ54LS125AFK	SNJ54LS125AFK

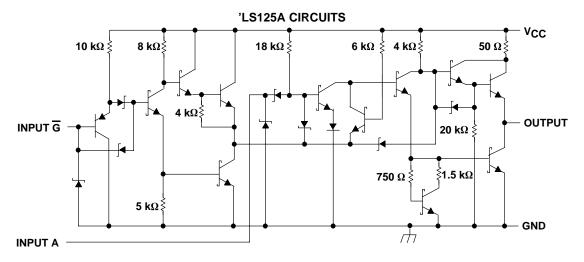

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

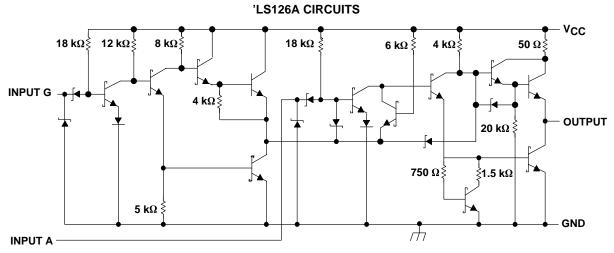

logic diagram (each gate)

schematics (each gate)

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†] ('125 and '126)

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage, V _I	5.5 V
Package thermal impedance, θ _{JA} (see Note 2):N package	80°C/W
Storage temperature range, T _{stq}	–65°C to 150°C


[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.


NOTES: 1. Voltage values are with respect to network ground terminal.

2. The package termal impedance is calculated in accordance with JESD 51-7.

schematics (each gate)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)† ('LS125A and 'LS126A)

Supply voltage, V _{CC} (see Note 1)	
Input voltage, V _I	
Package thermal impedance, θ _{JA} (see Note 2): D package	86°C/W
N package	80°C/W
NS package	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. Voltage values are with respect to network ground terminal.
 - 2. The package termal impedance is calculated in accordance with JESD 51-7.

SN54125, SN54126, SN54LS125A, SN54LS126A, SN74125, SN74126, SN74LS125A, SN74LS126A QUADRUPLE BUS BUFFERS WITH 3-STATE OUTPUTS

SDLS044A - DECEMBER 1983 - REVISED MARCH 2002

recommended operating conditions

		SN54125 SN54126			SN74125 SN74126			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage			0.8			0.8	V
Іон	High-level output current			-2			-5.2	mA
loL	Low-level output current			16			16	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			SN54125 SN54126			;	UNIT		
				MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIK	$V_{CC} = MIN,$	I _I = -12 mA				-1.5			-1.5	V
Vou	$V_{CC} = MIN,$	V _{IH} = 2 V,	$I_{OH} = -2 \text{ mA}$	2.4	3.3					٧
VOH	V _{IL} = 0.8 V		$I_{OH} = -5.2 \text{ mA}$				2.4	3.1		V
Voi	$V_{CC} = MIN,$	V _{IH} = 2 V,	V _{IL} = 0.8 V,			0.4			0.4	V
VOL	$I_{OL} = 16 \text{ mA}$					0.4			0.4	V
,	$V_{CC} = MAX$	V _{IH} = 2 V,	$V_0 = 2.4 \text{ V}$			40			40	
loz	$V_{IL} = 0.8 V$		$V_0 = 0.4 \text{ V}$			-40			-40	μΑ
lį	$V_{CC} = MAX$,	$V_{ } = 6.5 V$				1			1	mA
lН	$V_{CC} = MAX$,	V _I = 2.4 V				40			40	μΑ
IլL	$V_{CC} = MAX$,	V _I = 0.4 V				-1.6			-1.6	mA
l _{OS} §	$V_{CC} = MAX$			-30		-70	-28		-70	mA
loo	$V_{CC} = MAX$		'125		32	54		32	54	mA
Icc	(see Note 3)		'126		36	62		36	62	IIIA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: Data inputs = 0 V; output control = 4.5 V for '125 and 0 V for '126.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

PARAMETER	TEST CONDITIONS			SN54125 SN74125			SN54126 SN74126			
			MIN	TYP	MAX	MIN	TYP	MAX		
^t PLH	$R_1 = 400 \Omega$	C _L = 50 pF		8	13		8	13	ns	
^t PHL	KL = 400 sz,	OL = 30 pi		12	18		12	18	113	
^t PZH	R _L = 400 Ω,	C _I = 50 pF		11	17		11	18	ns	
t _{PZL}		OL = 30 pi		16	25		16	25	113	
^t PHZ	$R_1 = 400 \Omega$	C _L = 5 pF		5	8		10	16	ns	
tPLZ	TYL — 400 52,	OL = 3 PF		7	12		12	18	115	

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time.

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

SDLS044A - DECEMBER 1983 - REVISED MARCH 2002

recommended operating conditions

		SN54LS125A SN54LS126A			SN SN	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
ІОН	High-level output current			-1			-2.6	mA
lOL	Low-level output current			12			24	mA
T _A	Operating free-air temperature	-55		125	0		70	°C

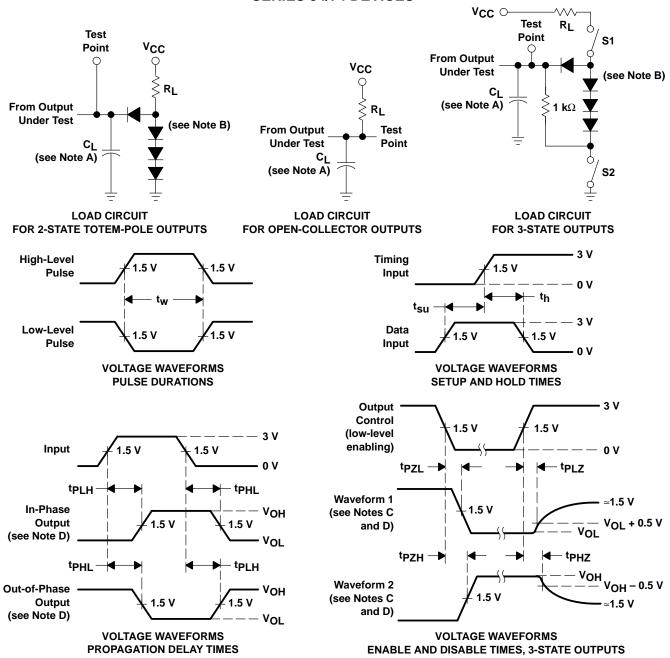
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS†			SN54LS125A SN54LS126A			SN74LS125A SN74LS126A			UNIT
				MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	
VIK	$V_{CC} = MIN,$	$I_{I} = -18 \text{ mA}$				-1.5			-1.5	V
Voн	$V_{CC} = MIN,$	$V_{IL} = 0.7 V$,	$I_{OH} = -1 \text{ mA}$	2.4						V
VOH	V _{IH} = 2 V	V _{IL} = 0.8 V	$I_{OH} = -2.6 \text{ mA}$				2.4			V
		$V_{IL} = 0.7 V$,	$I_{OL} = 12 \text{ mA}$		0.25	0.4				
VOL	V _{CC} = MIN, V _{IH} = 2 V	$V_{IL} = 0.8 V$,	$I_{OL} = 12 \text{ mA}$					0.25	0.4	V
	I VIH - Z V	V _{IL} = 0.8 V,	$I_{OL} = 24 \text{ mA}$					0.35	0.5	
	V _{CC} = MAX,	V _{IL} = 0.7 V	V _O = 2.4 V			20				^
			V _O = 0.4 V			-20				
loz	V _{IH} = 2 V,	V., 0.9.V	V _O = 2.4 V						20	μΑ
		V _{IL} = 0.8 V	V _O = 0.4 V						-20	
lį	$V_{CC} = MAX$,	V _I = 7 V				0.1			0.1	mA
lН	$V_{CC} = MAX$,	V _I = 2.7 V				20			20	μΑ
1	$V_{CC} = MAX$,	'LS125A-G input	S			-0.2			-0.2	mA
II∟	V _I = 0.4 V	'LS125A-A input	s; 'LS126A All inputs			-0.4			-0.4	mA
I _{OS} §	V _{CC} = MAX			-40		-225	-40		-225	mA
	V _{CC} = MAX		'LS125A		11	20		11	20	mΛ
lcc	(see Note 4)		'LS126A		12	22		12	22	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see Figure 1)

PARAMETER	TEST CONDITIONS			SN54LS125A SN74LS125A			SN54LS126A SN74LS126A		
			MIN	TYP	MAX	MIN	TYP	MAX	
^t PLH	$R_1 = 667 \Omega$	C _I = 45 pF		9	15		9	15	ns
^t PHL	K_ = 007 52,	OL = 40 pi		7	18		8	18	113
^t PZH	$R_L = 667 \Omega$,	C _L = 45 pF		12	20		16	25	ns
^t PZL	11 = 007 52,	OL = 43 PI		15	25		21	35	115
^t PHZ	$R_1 = 667 \Omega$	C _I = 5 pF			20			25	ns
^t PLZ	11 - 307 32,	CL=3 pF			20			25	113

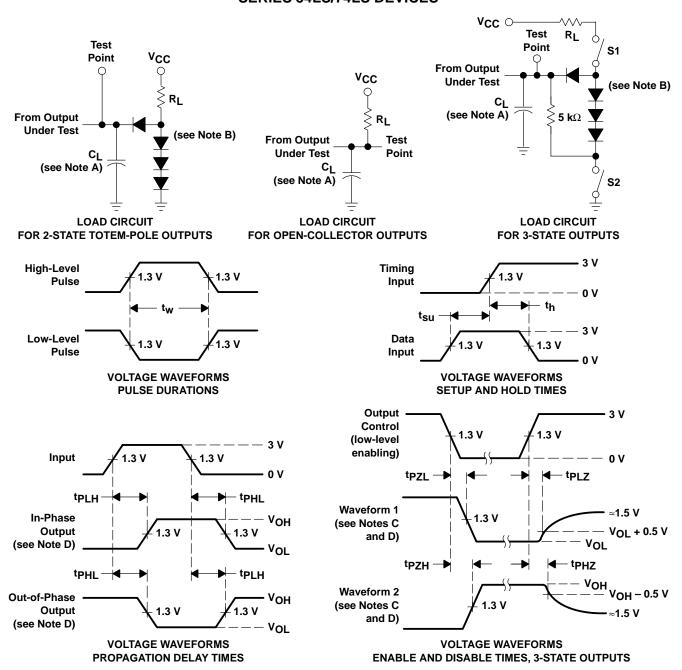


 $^{^\}ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

NOTE 4: Data inputs = 0 V; output control = 4.5 V for 'LS125A and 0 V for 'LS126A.

PARAMETER MEASUREMENT INFORMATION **SERIES 54/74 DEVICES**



- NOTES: A. C_I includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
 - E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50 \Omega$; t_r and $t_f \leq$ 7 ns for Series 54/74 devices and t_r and $t_f \le 2.5$ ns for Series 54S/74S devices.
 - F. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION SERIES 54LS/74LS DEVICES

- NOTES: A. C_I includes probe and jig capacitance.
 - B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. S1 and S2 are closed for tpLH, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
 - E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
 - F. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O \approx 50 \ \Omega$, $t_f \leq$ 1.5 ns, $t_f \leq$ 2.6 ns.
 - G. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

